
Assimilation of Radar Radial Velocity, Reflectivity, and Pseudo–Water Vapor for
Convective-Scale NWP in a Variational Framework

ANWEI LAI

School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing, and Hubei Key Laboratory for

Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan, China, and

Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

JIDONG GAO AND STEVEN E. KOCH

NOAA/National Severe Storms Laboratory, Norman, Oklahoma

YUNHENG WANG, SIJIE PAN, AND ALEXANDRE O. FIERRO

Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/National

Severe Storms Laboratory, Norman, Oklahoma

CHUNGUANG CUI

Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain,

China Meteorological Administration, Wuhan, China

JINZHONG MIN

School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing, China

(Manuscript received 26 November 2018, in final form 27 May 2019)

ABSTRACT

To improve severe thunderstorm prediction, a novel pseudo-observation and assimilation approach in-

volving water vapor mass mixing ratio is proposed to better initialize NWP forecasts at convection-resolving

scales. The first step of the algorithm identifies areas of deep moist convection by utilizing the vertically

integrated liquid water (VIL) derived from three-dimensional radar reflectivity fields. Once VIL is obtained,

pseudo–water vapor observations are derived based on reflectivity thresholds within columns characterized

by deep moist convection. Areas of spurious convection also are identified by the algorithm to help reduce

their detrimental impact on the forecast. The third step is to assimilate the derived pseudo–water vapor

observations into a convection-resolving-scale NWP model along with radar radial velocity and reflectivity

fields in a 3DVAR framework during 4-h data assimilation cycles. Finally, 3-h forecasts are launched every

hour during that period. The performance of this method is examined for two selected high-impact severe

thunderstorm events: namely, the 24 May 2011 Oklahoma and 16 May 2017 Texas and Oklahoma tornado

outbreaks. Relative to a control simulation that only assimilated radar data, the analyses and forecasts of

these supercells (reflectivity patterns, tracks, and updraft helicity tracks) are qualitatively and quantitatively

improved in both cases when the water vapor information is added into the analysis.

1. Introduction

Over the last three decades, the assimilation of radar

data into convective-scale numerical weather prediction

(NWP) models has been explored in a wide variety of

ways, including optimal interpolation, simple initializa-

tion technique and complex cloud analysis (Lin et al.

1993; Albers et al. 1996; Zhang et al. 1998; Zhang 1999;

Ducrocq et al. 2000; Weygandt et al. 2002), three- or

four-dimensional variational data assimilation (3DVAR

or 4DVAR, Sun and Crook 1997, 1998; Gao et al. 1999,

2004; Fillion and Mahfouf 2000; Hu et al. 2006a, b; XiaoCorresponding author: Jidong Gao, jidong.gao@noaa.gov
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and Sun 2007; Caumont et al. 2010; Stensrud and Gao

2010; Sun and Wang 2013; H. Wang et al. 2013a,b;

Wattrelot et al. 2014), the ensemble Kalman filter

(EnKF, Zhang et al. 2004; Tong and Xue 2005; Aksoy

et al. 2009; Yussouf and Stensrud 2010; Dowell et al.

2011), and hybrid variational and ensemble approaches

(X. Wang et al. 2013; Gao and Stensrud 2014; Gao et al.

2016; Wang and Wang 2017 and citations therein).

These works demonstrated that ingesting Doppler radar

data information into convective-scale NWP models

helped improve severe weather analyses and short-term

(#6 h) forecasts. The assimilation of radar data into

convective-scale NWP, however, still bears many chal-

lenges because typical weather radars cannot directly

observe the vast majority of the variables predicted by

NWP models. Radar radial velocity observations con-

tain information about one component of the wind field,

whereas radar reflectivity and dual-polarization obser-

vations provide information about the distribution of

various kinds of hydrometeors. None of the reflectivity

and dual-polarization observations, however, are ex-

plicitly predicted by the NWP models. The functional

relationships often used to diagnose radar reflectivity

from the predicted hydrometeor variables are nonlinear.

Ge et al. (2013) tested the impact of assimilating mea-

surements of different model state variables on the short-

term forecasts of supercell thunderstorm events by

performing a set of observing system simulation experi-

ments (OSSEs) using a 3DVAR cycled analysis approach.

They found that among all types of measurements, hori-

zontal wind andwater vapor observations have the greatest

impact on storm-scale analyses and short-range forecasts,

followed by potential temperature measurements and

vertical velocity. Although partial wind measurements

within storms can be derived from radar data, there is far

less information related to the moisture and potential

temperature fields for convective-scale weather systems.

More specifically, there are no direct observations/mea-

surements of water vapor mass mixing ratio (qy). An al-

gorithm using qy and in-cloud thermal adjustments has

been employed in the Advanced Regional Prediction Sys-

tem (ARPS; Xue et al. 2001, 2003) complex cloud analysis

scheme (Zhang 1999; Hu et al. 2006a; Schenkman et al.

2011). In this approach, the relative humidity (RH) is ad-

justed to 100% within cloud regions defined by a given

composite radar reflectivity threshold. However, rapid

forecast error growth is found in most variables with re-

flectivity forecasts suffering from large overestimates and

positive biases (Tong 2015). The gradual insertion of water

vapor mass can quickly result in overestimates of the in-

tensity and areal coverageof convection (Fierro et al. 2016),

leading to a degradation of the forecast after just a few

cloud-analysis cycles (Schenkman et al. 2011; Schenkman

2012). In recent years, many other approaches aimed at

assimilating qy retrievals from cloud and/or precipitation

observations have been proposed (Macpherson et al. 1996;

Jones and Macpherson 1997; Haase et al. 2000; Sokol and

Rezacova 2006; Storto and Tveter 2009; Caumont et al.

2010; Wattrelot et al. 2014; Fierro et al. 2012, 2016; Carlin

et al. 2017). A few recent examples are given in detail

below.

Capitalizing on the importance of moisture in-

formation, Caumont et al. (2010) and Wattrelot et al.

(2014) implemented a 1D 1 3DVAR approach in a

mesocale model developed at Meteo-France. The ob-

served reflectivity column was used to compute the

relative humidity (RH) profile through a Bayesian in-

version technique, which serves as a pseudo-observation

for the subsequent 3DVAR assimilation. The applica-

tion of this method in convection-allowing (dx # 3–

4 km) models showed that assimilating pseudo-observed

RH resulted in notable improvements in the short-term

forecasts of accumulated precipitation (Marécal and

Mahfouf 2002, 2003; Lopez and Bauer 2007; Caumont

et al. 2010; Wattrelot et al. 2014). H. Wang et al. (2013a)

designed a scheme to estimate in-cloud qy and cloud

water from radar reflectivity, and assimilated these

pseudo-observations into the Weather Research and

Forecasting (WRF-ARW) Model. The results indi-

cated that the assimilation of RH pseudo-observations

from in-cloud qy adjustment had a noticeable positive

impact on the short-term precipitation prediction of

summer convective events. The pseudo-qy observations,

however, were derived based on in-cloud adjustments

from cloud analysis schemes (Albers et al. 1996; Zhang

et al. 1998; Hu et al. 2006a), which often suffer from

overpredictions of moisture-derived variables such as

rainfall.

Over the past few years, Fierro et al. (2015, 2016) de-

veloped nudging and 3DVARassimilation techniques for

pseudo-qy derived from observed total lightning density

fields from either the ground-based Earth Networks To-

tal Lightning (broadband) Network (ENTLN) or the

spaceborne Geostationary Lightning Mapper (GLM;

Goodman et al. 2013; Fierro et al. 2019, manuscript sub-

mitted toMon. Wea. Rev.). Over a wide range of forecast

days, each of these methods revealed forecast improve-

ments that were overall comparable to forecasts assimi-

lating only WSR-88D data (radial velocity and/or

reflectivity). Specifically, in a 3DVAR approach, it was

found that assimilating lightning data alone through a

simple pseudo-qy observation operator notably improved

the short-term forecast of high-impact weather events in

terms of the timing and placement of the observed con-

vection (Fierro et al. 2016) as indicated by observed radar

reflectivity fields from the three-dimensional National
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Mosaic and Multisensor Quantitative Precipitation Esti-

mation product fromNational Severe Storms Laboratory

(NSSL) (Zhang et al. 2011). In contrast to radar data from

the U.S. NEXRAD network, lightning data do not suffer

from paucity in oceanic or mountainous regions, ren-

dering this assimilation method particularly useful for

such vulnerable areas in the United States. As indicated

in the first study documenting this lightning data assimi-

lation method (Fierro et al. 2012), the direct insertion/

nudging of pseudo-qy observation, however, does not

address the development of spurious cells in the model

arising from biases and error in the initial conditions de-

rived or downscaled from the large-scale fields of oper-

ationalmodels [e.g., NorthAmericanMesoscale Forecast

System (NAM) model]. Research is ongoing to partially

mitigate this important limitation.

Carlin et al. (2017) recently proposed an alternative,

attractive approach to assimilate pseudo-qy observa-

tions derived from dual-polarization differential re-

flectivity (ZDR, Kumjian 2013; Snyder et al. 2015) fields.

Their scheme first identifies ZDR columns, as these

generally are associated with locations characterized by

deep moist convection (nearly undiluted updrafts). The

second step of their algorithm computes pseudo-qy and

temperature observations through a cloud analysis

scheme (Hu et al. 2006a). The method was evaluated for

two tornadic supercell storms and showed improve-

ments in both the analysis and forecasts for these two

cases. In particular, the analyzed updraft cores were

more coherent, and the analysis contained notably fewer

spurious cells compared to a control run not assimilating

any dual-polarization data. The 1-h short-term forecasts

exhibited a reduced northward position bias and rea-

sonable storm propagation speeds when evaluated

against observations. These forecasts, however, were

based on ZDR columns derived from only one radar site.

A reliable ZDR column algorithm from multiple radars

remains to be developed in the future, which is the

subject of ongoing research.

The present study is inspired by earlier research based

on lightning and ZDR data assimilation (Carlin et al.

2017; Fierro et al. 2014, 2016), with a 3DVAR approach

in which both radial velocity and reflectivity are assim-

ilated (Gao and Stensrud 2012). Similar to the ZDR

column algorithm, the Vertically Integrated Liquid

water (VIL; Greene and Clark 1972) calculated from the

observed reflectivity fields is used to identify the loca-

tions of deep moist convection. We use the convective–

stratiform segregation method described in Zhang and

Qi (2010) to identify convection regions, and to create

pseudo-qy observations in these regions. The pseudo-qy
observations are then assimilated into a convection-

resolving NWP model along with radar radial velocity

and reflectivity using a 3DVAR package (Gao and

Stensrud 2012). Themain goal of this study is to improve

short-term (#3 h) thunderstorm forecasts. The 3DVAR

method is chosen because of its significantly lower

computational burden compared to the more advanced

4DVAR, EnKF, and/or hybrid methods. As pointed out

in Gao and Stensrud (2012), efficient and fast analysis

methods are essential for prediction of storm-scale

weather systems because of the critical need for opera-

tional centers to disseminate analyses and forecasts in a

timely manner to shareholders and the public.

2. Methodology

a. The 3DVAR system

In this study, we employed a 3DVAR data assimila-

tion system that was initially developed at the Center for

Analysis and Prediction of Storms (CAPS), and sub-

sequently refined at NSSL. Following Gao et al. (2004),

the 3DVAR cost function is defined as

J(x)5
1

2
(x2 xb)

T
B21(x2 xb)

1
1

2
[H(x)2 yo]TR21[H(x)2 yo]1 J

c
(x) , (1)

where the first term on the right-hand side defines the

Euclidian distance between the analysis vector, x, and

the background, xb, weighted by the inverse of the NWP

model background error covariance matrix B. In an

earlier ARPS version of this 3DVAR system (Gao et al.

2004, Hu et al. 2006a, b), the analysis vector x contained

six variables: the three wind components (u, y, and w),

potential temperature (u), pressure (p), and water vapor

mixing ratio (qy). Only radar radial velocity and surface

observations were assimilated into this system. Hydro-

meteor variables were updated by a complex cloud

analysis package (Hu et al. 2006a). In the upgraded

NSSL version (Gao and Stensrud 2012), the capability to

assimilate hydrometeor-related model variables was

added, which includes the mass mixing ratios for rain-

water (qr), snow (qs), and hail (qh). The second term on

the right-hand side is the observation term, which de-

fines the (Euclidian) distance between the analysis and

the observation vector, yo. In this study, yo includes ra-

dar radial velocity, radar reflectivity, pseudo-qy, and

surface data. For radar data, the forward model H(x) is

defined in Gao and Stensrud (2012) and will be briefly

discussed later; R represents the observation error co-

variance matrix, which includes both instrument and

representativeness errors. The third term labeled Jc(x)

represents the dynamic constraints. In the original version

of the ARPS 3DVAR code, the mass continuity equation
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was imposed as a weak constraint. Gao et al. (1999, 2004)

found that this mass continuity constraint was very useful

in providing accurate wind analyses, especially for vertical

velocity. More recently, a modified mass constraint based

on the WRF model equations was included in this

3DVAR scheme. The cost function [Eq. (1)] was con-

verted into an incremental form by defining a new control

variable involving the square root of the background error

covariance matrix B (Gao et al. 2004), which is modeled

by a recursive filter (Purser et al. 2003a, b).

The radar forward observation operator for radial

velocity, which includes the effects of Earth’s curvature

is written as follows,

y
r
5

dh

dr
w1

ds

dr
(u sinf1 y cosf) , (2)

where yr is the projected radial velocity, r is the slant

range (ray path distance), h is the height above the

curving Earth’s surface, s is the distance along Earth’s

surface, and f is the radar azimuth angle. The propa-

gation of the beams is assumed to follow the 4/3-

effective Earth radius model (Doviak and Zrnić 1993;

Gao et al. 2008).

The forwardoperator for the equivalent radar reflectivity

factor in linear units (mm6m23) is obtained by summing

the contributions from three mass mixing ratios—namely,

rain, snow, and hail—using the following formulation (Lin

et al. 1983; Gilmore et al. 2004; Dowell et al. 2011):

Z
e
5Z(q

r
)1Z(q

s
)1Z(q

h
) . (3)

Details behind each of these terms can be found in Tong

andXue (2005) andDowell et al. (2011). All the forecast

experiments employ the Thompson microphysics, which

predicts the number concentration for ice and rainwater

(instead of assuming a constant value N0) and the mass

mixing ratio of five hydrometeor species (cloud, ice,

rain, snow, hail).

Given that the reflectivity factor is a function of three

hydrometeor variables [Eq. (3)], the assimilation of re-

flectivity observations becomes an even more under-

determined problem. For example, it is possible to obtain a

nonzero rainwater mixing ratio in the upper levels of the

model where only snow and graupel mixing ratios are ex-

pected. To alleviate this potential limitation, a forward

reflectivity operator utilizing information from the model

background has been proposed (Gao and Stensrud 2012):

Z
e
5

8><
>:

Z(q
r
)1Z(q

h
) T

b
. 58C

Z(q
s
)1Z(q

h
) T

b
,258C

aZ(q
r
)1 (12a)[Z(q

s
)1Z(q

h
)] 258,T

b
, 58C

,

(4)

where a varies linearly between 0 at Tb 5258C and 1 at

Tb 5 58C, and Tb is the background temperature from a

NWP model. Gao and Stensrud (2012) found that the

modified equation in Eq. (4) was more accurate and

effective in obtaining realistic hydrometeor profiles

when the reflectivity data were assimilated.

Multiple analysis passes are used to analyze different

observation types with different filter scales in order to

consider the variations in the observation spacing

among different observation data. Xie et al. (2011) and

Li et al. (2010) proved theoretically that the multiple-

pass approach with a recursive filter is superior to the

conventional single-pass 3DVARmethod. In this study,

three passes of the recursive filter are used. The first pass

used a horizontal decorrelation length scale L 5 24 km,

the second pass L5 12km, and the third pass L5 4 km.

The pseudo-qy observations are only assimilated in the

third pass.

b. Pseudo–water vapor mixing ratio observations
derived from VIL

As discussed previously, among all types of mea-

surements, water vapor observations have one of the

greatest impacts on storm analyses and short-range

forecasts (Fierro et al. 2012, Ge et al. 2013). To im-

prove the short-term (0–3h) forecast of high-impact

weather events at convection-resolving scales, a new

method is proposed to derive pseudo-qy observations

based on VIL. One key aspect of this method is to use

the VIL derived from reflectivity observations to iden-

tify areas of deep moist convection (Zhang and Qi,

2010), as described herein.

As a first step, the radar reflectivity data frommultiple

WSR-88Ds within the forecast domain are blended and

interpolated onto the model grid after being subjected

to a basic quality control (e.g., removing radar clutter

and nonmeteorological reflectivity) to yield a three-

dimensional gridded reflectivity data mosaic. If reflec-

tivity data from multiple radars exist at the same grid

point, the largest value is chosen. The quality control

(e.g., de-aliasing radial velocity) and processing of the

Doppler radar data are the same as in Gao et al. (2013).

The procedure for creating the pseudo-qy observa-

tions is highlighted in Fig. 1. First, the VILs (a fixed

constant N0 5 8 3 106m24 is assumed) are calculated

from the 3D gridded observed reflectivity data mo-

saicked from multiple radars (Greene and Clark 1972;

Zhang and Qi 2010) (referred to as ‘‘observed VIL’’)

and the background reflectivity produced byWRF using

Eq. (4) (referred to as ‘‘backgroundVIL’’), respectively.

The convective-stratiform segregationmethod of Zhang

and Qi (2010) is employed to segregate the convective

and stratiform columns. Using VIL to differentiate
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between convective and stratiform regions was shown

to be, overall, more reliable than using the reflectivity

thresholds. It is because the later has difficulty dis-

tinguishing some regions of the trailing stratiform pre-

cipitation from regions of convective precipitation

(Zhang and Qi 2010).

If the VIL of a given model grid column exceeds a

fixed threshold (set here to a default of 6.5 kgm22) in

both the observed and model background reflectivity,

the column is classified as ‘‘convective’’ and stratiform

otherwise. As indicated in Zhang andQi (2010), the VIL

threshold is empirical, and based on subjective analyses

of composite reflectivity from several squall-line events

in the central United States during 2008 and 2009. The

RH in the identified convective columns is set to 100%

between the lifted condensation level (LCL) and a fixed

‘‘cloud top’’ height defined by a fixed threshold of

18.5 dBZ (Klazura and Imy, 1993), which is similar to

Fierro et al. (2016, 2019, manuscript submitted to Mon.

Wea. Rev.).

Often, however, background fields may contain spuri-

ous convection where the observed reflectivity indicates

stratiform columns or ‘‘no-rain’’ echoes, especially when

invoking high-frequency radar DA cycles. To alleviate

this drawback, two scenarios are considered. If the ob-

served VIL is less than the threshold value of 6.5kgm22,

but the background VIL exceeds this threshold, then

spurious convection is identified. In this case, the RH

from the model background is decreased to 95% of its

initial value above the LCL. If (i) both the observed and

background VIL are smaller than the threshold, (ii) the

observed reflectivity is less than 5dBZ, and (iii) the

background reflectivity is greater than 20dBZ for a given

grid, then this grid column is classified as a ‘‘no-rain’’

region (Gao et al. 2018). For these no-rain areas, the

model background RH is reduced by half of the differ-

ence between the background RH and a reference RH0,

which is similar to the value used to calculate the volu-

metric cloud fraction in the cloud analysis developed by

Zhang (1999), namely, RH0 5 95% for height (z, AGL)

FIG. 1. Flowchart highlighting the steps for deriving pseudo–water vapor mixing ratio. ‘‘Ref’’ stands for reflectivity; the VIL_obs and

VIL_bkg represent the vertically integrated liquid water calculated from the observed reflectivity and simulated reflectivity of the

background field, respectively. RH0 is the threshold of relative humidity whose value is dependent on height.
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below 600m, 90% between z 5 600–1500m, 85% be-

tween z5 1500 and 2500m, and 75% for z$ 2500m. The

purpose for this approach is to hamper spurious cell de-

velopment in the domain (Fig. 1). Out of the above two

scenario, the RH from model background are not

changed due to the uncertainty of the relationship be-

tween RH and reflectivity.

It is relevant tomention that thederivationof the pseudo-

qy observations from the RH profiles herein contains three

main sources of uncertainties. The first is the identification/

classification of the ‘‘deep moist convection’’ areas, which

depends on the VIL threshold value and the radar obser-

vational horizontal and vertical coverage regions. The sec-

ond is the calculation of saturationwater vapormixing ratio,

whose accuracy depends on the quality of pressure and

temperatures in the background field. The third is the em-

pirical variable related to relative humidity adjustment. To

reduce these uncertainties, the pseudo-observation error

can be set a relatively large value. In our experiments,

3.0gkg21 is used, similar to Fierro et al. (2016).

3. Experimental design

To determine the impact of the assimilation of

pseudo-qy observations by the 3DVAR method on

short-term convective NWP, two tornado supercell

events were selected: 16 May 2017 over the boundary of

western Oklahoma and the Texas Panhandle (Case 1,

Fig. 2a) and the 24May 2011 tornado outbreak in central

Oklahoma (Case 2, Fig. 2b).

The forecast model used in this study is the three-

dimensional compressible nonhydrostatic WRF Model

(version 3.7.1) with Advanced Research WRF dynamic

solver (WRF-ARW; Skamarock et al. 2008), which has

been used for a wide range of applications across scales

ranging from meters to thousands of kilometers. The

model physics configuration includes the Thompson mi-

crophysics scheme (Thompson et al. 2008), the Yonsei

University planetary boundary layer scheme, the Dudhia

shortwave radiation scheme (Dudhia 1989), and the

Rapid Radiative Transfer Model (RRTM) longwave ra-

diation scheme (Mlawer et al. 1997). No cumulus pa-

rameterization scheme was employed. In this study, the

model domain size for both cases was set to 750km 3
750km, with a horizontal grid spacing of 1.5km. The

geographical center of the model domain for the first case

is at (35.848N, 99.758W) and the second at (35.848N,

98.008W). The stretched vertical grid consists of 51 levels

with a top set at 50hPa (;20–22km SL). The time step

for the integration of the prognostic equations was set

to 6 s.

The flowchart of the cycled data assimilation system

and forecast for the two case studies selected is shown in

Fig. 3. The model is cold started at 1900 UTC, and the

data assimilation is cycled at 15min intervals until

2300 UTC. During the 4-h cycling period herein (Fig. 3),

3-h forecasts are launched every hour. ForCase 1, the 3-km

High-Resolution Rapid Refresh (HRRR) forecast fields

initialized at 1800 UTC 16 May 2017 are interpolated into

the analysis and forecast domain (Fig. 2) to provide initial

background fields for the data assimilation cycles and

boundary conditions for short-term forecasts. Given that

the HRRR fields were not yet available for Case 2, the

analysis fields of the Global Forecast System (GFS-ANL,

0.58) from 1800 UTC 24May to 0300 UTC 25May 2011 at

3-h interval are used instead.

(a) (b)

FIG. 2. Simulation domains (black square) and locations of the radar sites for (a) 16 May 2017 and (b) 24 May

2011. The maximum range of each radar is shown by a gray circle. The first case utilizes 21 radars and the second

case has just 10 radars.
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The assimilation of radar data in this study includes

the radial velocity, reflectivity and pseudo-qy observations

derived from the NEXRAD Level-II data obtained from

the National Centers for Environmental Information re-

pository (https://www.ncdc.noaa.gov/nexradinv/). For Case

1 (2), data from 21 (10) radars overlapped the simulation

domain, respectively (Fig. 2). Four experiments were per-

formed: The control runs, labeled as C1Rad andC2Rad for

each case, respectively, assimilated radar data and surface

observations from the Oklahoma Mesonet. Experiments

C1RadPQ and C2RadPQ were the same as control but

added the assimilation of pseudo-qy observations. A sum-

mary of the details behind each experiment is provided in

Table 1.

4. Results

a. 16 May 2017 case

On 16 May 2017, environmental conditions favored

the development of severe thunderstorms across the

eastern Texas and Oklahoma Panhandles. Early in the

afternoon, the first convective cells initiated off a dryline

near Hutchinson to Hansford, Texas, and gradually

moved northeastward, eventually reaching Beaver

County, Oklahoma (Fig. 4a). These storms produced at

least two weak tornadoes and baseball size hail north of

Beaver County. More thunderstorms initiated farther

south near the dryline in eastern Carson and Armstrong

County, Texas. These storms produced very large hail

(up to tennis ball size) and a few tornadoes as they

gradually moved eastward, towardWheeler, Texas. One

supercell moved into Collingsworth County, and then

produced a weak tornado just west of the Texas and

Oklahoma state line 10 miles east of Collingsworth,

Texas. This storm then weakened somewhat, only to

regain strength to eventually produce the Elk City,

Beckham, Oklahoma, tornado around 0035 UTC, which

resulted in one fatality. In total, seven tornadoes to-

gether with several large hail events were reported in

Oklahoma alone (refers to the storm report, https://

www.spc.noaa.gov/climo/reports/170516_rpts.html).

The impact of assimilating VIL-based pseudo-qy ob-

servations in conjunction with radar radial velocity and

reflectivity is evaluated first. The analysis increments of

qy, and an overlay comparing the observed reflectivity to

the background reflectivity exceeding 35dBZ following

the assimilation of pseudo-qy observations at 3 km above

ground level (AGL), is shown in Fig. 4 for the analysis

times 1900, 2100, and 2300 UTC. It can be seen that, at

1900 UTC, there are two weak qy increment areas over

the north Texas panhandle with a maximum value of

;0.9 g kg21 (Fig. 4a). The observed reflectivity echoes

and model forecasted background echoes are displaced

by about 25–50km from each other (Fig. 4b). During

each successive data assimilation cycle, the convective

cells over the north Texas Panhandle gradually move

northeastward into the Oklahoma Panhandle and, later,

over southwest Kansas where multiple supercell mergers

(upscale growth) resulted in the formation of a meso-

scale convective system (MCS) at 2300 UTC. At

2100 UTC, most of the simulated storms are closely

collocated with the observed storms though slight dis-

placement errors between the observation and back-

ground still exist (Fig. 4d). The qy increments are

primarily seen where large (.35dBZ) radar echoes

exist in the observations but with a smaller areal cov-

erage because of the small decorrelation length scale

(L 5 4km) chosen (Fig. 4c). In areas where spurious

echoes were identified by the algorithm, the qy in-

crements are negative, whose primary effect is to grad-

ually weaken some of the spurious cells in the analysis.

At 2300UTC, the three analyzed supercell storms located

at the boundary between Texas and Oklahoma de-

veloped more rapidly than observed. Similar to 1900 and

2100 UTC, the positive qy increment areas are mainly

collocated within strong radar echo regions, while the

negative qy increment areas are collocated with spurious

echoes in the analysis domain. Themaximum (minimum)

FIG. 3. Illustration of data assimilation cycles and forecast cycles

used for both case studies. ‘‘OBS’’ represents the assimilated ob-

servations, such as radar velocity and reflectivity, surface data, and

the pseudo–water vapor. The observations are assimilated every

15min, with a 3-h forecast launched every hour. The blue arrows

indicate the time at which the observations are assimilated, and the

red lines indicate the time at which the 3-h forecasts are launched.

TABLE 1. List of experiments.

Experiments Observation

Pseudo-

observation

16 May 2017 C1Rad Radar 1 mesonet —

C1RadPQ Radar 1 mesonet qy
24 May 2011 C2Rad Radar 1 mesonet —

C2RadPQ Radar 1 mesonet qy
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FIG. 4. (left) Analysis increments for qy at 3 km AGL, and (right) observed and model background reflectivity

fields exceeding 35 dBZ (shaded for observed reflectivity at 5-dBZ interval and black contour for background

reflectivity in 10-dBZ interval) for C1RadPQ at (a),(b) 1900 UTC, (c),(d) 2100 UTC, and (e),(f) 2300 UTC 16May

2017. The respective county names are labeled in (a).
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value of the qy increment was 7.6 (20.9) gkg21, re-

spectively. At this time (2300 UTC), the number of spu-

rious storm cells is notably reduced compared to earlier

times (1900 and 2100 UTC).

The analyzed reflectivity fields at 2300 UTC for

C1Rad (Fig. 5b) and C1RadPQ (Fig. 5c) show that the

assimilation of pseudo-qy produces three well-defined

supercell objects near the Texas and Oklahoma border

when compared against observed composite reflectivity

fields in term of storm locations and storm intensity

(Fig. 5a). The southernmost supercell near the Texas

andOklahoma border for C1RadPQ is more vigorous in

comparison with C1Rad, and is more consistent with the

observations. From the observed composite reflectivity

fields (Figs. 5a,d,g,j), there are several MCSs propagat-

ing east-northeastward. To better analyze and discrim-

inate the comparisons, we divide the precipitation

system into three main regions from north to south (la-

beled A, B, and C) within the simulation domain

(Fig. 5a). At the analysis time (2300 UTC), a weak

convective cell is seen in region C. A few hours later, this

cell matures further with new cells continuously de-

veloping/back building from the southern boundary of

the domain (Figs. 5g,j). A cluster of several storm cells is

seen in region A, which gradually drifts northeastward

and, ultimately, outside of the simulation domain by

0300 UTC. The northernmost and middle storms are

stronger than the ones to the south. At 0000 UTC, the

northernmost cell splits into several smaller ones, re-

sulting in the formation of two additional mature su-

percells (Figs. 5d,g). At 0200 UTC, the cells in region B

gradually weaken while moving northeastward. During

the same period, several new cells grow at/near the

boundary of the simulation domain (Fig. 5j).

At 1-h forecast valid at 0000 UTC, the southernmost

cell in region B vanishes inC1Rad (Fig. 5e); but intensifies

in C1RadPQ (Fig. 5f), in better agreement with the ob-

servations (Fig. 5d). At 1.5-h forecast (valid at 0030UTC),

the middle supercell near Elk City, Oklahoma, in region

B for C1RadPQ intensified quickly (Fig. 5i), which is

also more consistent with the observations indicating the

presence of an EF3 tornado there at ;0030 UTC. Al-

though the same supercell is also well predicted at 1-h

forecast (valid at 0000UTC) inC1Rad (Fig. 5e), this storm

weakened very quickly until completely disappearing by

3-h forecast (Fig. 5k).

The above focuses on only one 0–3-h forecast re-

alization. To provide amore thorough examination of the

impact of the pseudo-qy assimilation, the simulated

composite reflectivity swaths and 2–5-km updraft helicity

(UH) tracks initiated at four different times are overlaid

with the SPC severe storm reports (tornadoes, hail, and

damaging wind) in Figs. 6 and 7 . The reflectivity swaths

and UH tracks are based on four 0–3-h model forecast

output every 15min. For the forecast initialized at

2000 UTC, the impact of the pseudo-qy is limited. The

predicted composite reflectivity tracks are similar in both

experiments (Figs. 6b,c) with both exhibiting notable

discrepancies relative to the observed reflectivity tracks

and the SPC reports (Fig. 6a). But for the forecast ini-

tialized at 2100 UTC, the assimilation of pseudo-qy has a

more noticeable positive impact as indicated by forecast

reflectivity tracks becoming gradually more consistent

with the observations (Fig. 6d), especially near the

Oklahoma and Texas Panhandle border (Fig. 6f vs

Fig. 6e). The forecast tracks of two main supercells near

the center of the domain improved when the forecast is

initialized at 2200 UTC as evidenced by severe weather

reports becoming better aligned with the main simulated

storms in C1RadPQ (Fig. 6i). In contrast, the C1Rad

exhibits a clear northward bias for all three major storm

tracks over the Oklahoma and Texas Panhandle border

(Fig. 6h). For the forecast initialized at 2300 UTC, the

tracks for all three major storms are well forecast with

very small phase errors in west Oklahoma for C1RadPQ

(Fig. 6l). Only two storm tracks are correctly predicted in

C1Rad. For theMCS in southwest Kansas, the embedded

supercells which produced tornadoes and severe hail re-

ports near the north central portion of the domain appear

to be reasonably well predicted in both experiments.

Also, both experiments miss the storms associated with

the hail reports in the western part of the domain and

exhibit a southward bias relative to the tornado-

producing convection. Additionally, the two supercells

located near the southern boundary of the domain pro-

duce weaker-than-observed reflectivity tracks. To prop-

erly account for these supercells in our forecast

experiments, a larger simulation domain would have

likely been needed.

As evidenced by the 2–5-km UH tracks initiated at

four different forecast times (2000, 2100, 2200, and

2300 UTC), the predicted rotational tracks gradually

become more consistent with the SPC storm reports;

especially when the pseudo-qy observations are assimi-

lated (Fig. 7). The UH tracks are narrower than the

maximum reflectivity tracks. These comparisons thus

demonstrate more directly the positive impact of cycled

pseudo-qy assimilation.

To evaluate the impact of assimilating pseudo-qy
more quantitatively, equitable threat scores [ETS; Eqs.

(1) and (2) in Clark et al. (2010)] are calculated for 0–3-h

forecasts initialized at four different times in both

C1Rad and C1RadPQ (Fig. 8). A perfect analysis or

forecast is defined as ETS5 1.0, and a poor analysis and

forecast are associated with ETS values close to 0. These

values are calculated for the composite reflectivity
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FIG. 5. (left) Horizontal cross sections of observed composite reflectivity, and corresponding analyses and forecasts from (middle) C1Rad

and (right) C1RadPQ for 0–3-h forecasts beginning at 2300 UTC 16 May 2017. Plots are shown for the initial time at (a)–(c) 2300 UTC, 1-h

forecast valid at (d)–(f) 0000 UTC, 1.5-h forecast valid at (g)–(i) 0030 UTC, and 3-h forecast valid at (j)–(l) 0200 UTC. The red filled circle in

(a) marks the location of Elk City.
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FIG. 6. Compositemaximum reflectivity swaths: (left) observed, (middle) C1Rad, and (right) C1RadPQ for 0–3-h forecasts beginning at

(a)–(c) 2000 UTC, (d)–(f) 2100 UTC, (g)–(i) 2200 UTC, and (j)–(l) 2300 UTC 16May 2017. The red triangles, green rhombuses, and blue

triangles represent the observed tornadoes, hail, and damaging wind events, respectively.
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FIG. 7. As in Fig. 6, but for 2–5-km updraft helicity tracks $25m2 s22 (gray shading) at each grid point.
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thresholds of 20, 30, and 40dBZ. The ETS for C1RadPQ

remains superior for the entire 0–3-h forecast duration

compared with that of C1Rad, indicating an overall

positive impact of the pseudo-qy assimilation. To

provide a more complete view of the overall perfor-

mance of the forecasts valid at different times, perfor-

mance diagrams (Roebber 2009), which conveniently

merge the probability of detection (POD), critical suc-

cess index (CSI), success ratio–one minus false alarm

ratio (FAR), and frequency bias are analyzed. Diagrams

of the 0–3 forecasts initialized at different times show

that, for most forecasts, C1RadPQ produces higher CSI

and POD for reflectivity at all thresholds (i.e., 20, 30,

and 40dBZ), along with an increase in success ratio.

When the reflectivity threshold is increased from 20

to 40dBZ, biases for all forecasts show a reasonable

increase for both DA experiments. These diagrams il-

lustrate further the benefit of assimilating pseudo-qy
observations, especially for forecasts initialized at later

times (Figs. 9j,k,l).

b. 24 May 2011 case

On 24 May 2011, a significant tornado outbreak of

long-lived supercell thunderstorms occurred in central

and northern Oklahoma, north Texas, and west Kansas

(Fierro et al. 2012). By the end of the day, a total of

12 tornadoes including two EF-3, two EF-4, and one

EF-5 tornadoes were reported in Oklahoma alone.

These tornadoes knocked down power poles, trees,

damaged buildings, and resulted in 11 fatalities and

nearly 300 injuries. Early on 24 May 2011, a strong

upper-level trough moved eastward over the Rocky

Mountains. Ahead of the trough, a low-level jet from the

south brought moist, warm air into western Oklahoma,

east of a well-defined dryline where a saturated layer

extended up to 850 hPa. Surface-based, most unstable,

convective available potential energy values were esti-

mated to reach 2500–4000 J kg21 (Tanamachi et al.

2015). In west central Oklahoma, thunderstorms de-

veloped in the early afternoon, and quickly intensified

into supercells as they gradually moved northeastward

(Fierro et al. 2012). These supercells lasted for several

hours and produced long-tracked tornadoes and large

hail. The timing of the tornadoes near the Oklahoma

City metro area came during the rush hour rendering

this outbreak particularly dangerous.

Similar to the first case, the analysis results are first

evaluated from a 4-h data assimilation period using

15-min assimilation frequency. The analysis increment of

qy, the observed reflectivity, and background reflectivity

exceeding 35dBZ following the assimilation of pseudo-qy
observations at 3kmAGL at the analysis time 1900, 2100,

and 2300 UTC are shown in Fig. 10. At the beginning of

FIG. 8. Equitable threat score (ETS) of each of the 0–3-h forecast

for reflectivity thresholds of (a) 20-, (b) 30-, and (c) 40-dBZ

thresholds for 16May 2017. Black lines for theC1Rad forecasts and

red lines for the C1RadPQ forecasts.
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FIG. 9. Performance diagrams for 0–3-h forecasts of composite reflectivity fields initiated at (a)–(c) 2000 UTC, (d)–(f) 2100 UTC, (g)–

(i) 2200 UTC, and (j)–(l) 2300 UTC 16May 2017: shown are the results for the (left) 20-, (middle) 30-, and (right) 40-dBZ thresholds. The

lower-left corner represents no forecast skill and, similarly, the upper-right corner indicates perfect skill. Black curves represent the

critical success index (CSI), and the diagonal gray lines the frequency bias. The blue and red dots show the results for C1Rad and

C1RadPQ, respectively. The number inside each dot represents the length of the forecast (‘‘0’’ is for 0-h forecast or analysis, ‘‘1’’ is for 1-h

forecast . . . etc).
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(a)

(f)

(b)

(c) (d)

(e)

Min = 0.0 g/kg
Max = 0.7 g/kg

Min =-0.2 g/kg
Max = 2.1 g/kg

Min =-0.9 g/kg
Max = 6.7 g/kg

OKC

FIG. 10. As in Fig. 4, but for 24 May 2011. In (a), the label ‘‘OKC’’ marks the location of the Oklahoma City

metro area.
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the assimilation period, the background fields are de-

rived from the analysis products of NCEP’s Global

Forecast System (GFS), so no hydrometeors or radar

echoes are present in the simulation domain. After the

first analysis, weak positive qy increments appear in west

Oklahoma and southwest Kansas (Fig. 10a), which as-

sociate well with the reflectivity observations (Fig. 10b).

The maximum increment for qy after the assimilation is

0.7 g kg21. With the subsequent assimilation cycles, at

2100 UTC, multiple storm cells begin to develop in

central Oklahoma and ultimately merge into a quasi-

linear convective system (QLCS) in parts of Kansas,

Oklahoma, and Texas. The qy increments match these

storm cells reasonably well (Fig. 10c) with the maximum

increment (2.1 g kg21) located near north Texas where

multiple storm cells are seen in the radar observations,

but missed in the model background. At 2300 UTC, the

simulated radar echoes collocate more consistently with

radar observations (Fig. 10f). Similar to Fierro et al.

(2016), the qy increments are confined to small areas

where strong convective cores are located with a maxi-

mum value of 6.7 g kg21.

The analyzed reflectivity fields at the end of the 4-h

data assimilation period for C2Rad (Fig. 11b) and

C2RadPQ (Fig. 11c) show that the assimilation of

pseudo-qy produces stronger supercells based on the

reflectivity patterns, especially near the southern

boundary of the domain (Fig. 11a). Similar to the pre-

vious case study, the forecast initialized at 2300 UTC is

described and shown as an example. At the analysis

time, a well-defined QLCS about 650km long and

400 km wide is produced in the domain and slowly

moves northeastward. To facilitate the discussion, the

QLCS was divided into 5 regions labeled from A to E

(Fig. 11a). In general, both C2Rad and C2RadPQ pro-

duce reasonable 0–3-h forecasts, especially for region C

which contains the most intense portion of the QLCS

(Fig. 11). In C2Rad, the storms in region D gradually

weaken over the 0–3-h forecast (Figs. 11e,h,k). The

storms in region D, however, strengthen in the

C2RadPQ (Figs. 11f,i,l), and remain in better agreement

with the observations despite admittedly being weaker-

than-observed (Figs. 11e,g,j). The storms in regions A

and B are generally well forecasted in both experiments

in contrast to those in region E that neither experiment

simulated well.

Similar to the first case study, the impact of the pseudo-

qy assimilation is limited during the first forecast initialized

at 2000 UTC as evidenced by similar composite re-

flectivity/UH tracks in both experiments (Figs. 12b,c),

generally not agreeing with observations and SPC reports

(Fig. 12a). For the forecast initialized at 2100 UTC, the

assimilation of pseudo-qy improves the representation of

reflectivity tracks in central Oklahoma by producing

stronger echoes, which in turn corroborate well with the

SPC’s tornado and hail reports especially near central

Oklahoma (Figs. 12d,e,f). When the forecast is initialized

at 2200UTC, the forecast reflectivity tracks for two storms

near the Texas and Oklahoma border match the severe

weather report reasonably well for C1RadPQ (Fig. 12i). In

comparison, C1Rad failed to forecast these two storm

tracks (Fig. 12h). For the last forecast initialized at

2300UTC, the storm tracks in this same area are gradually

improved in C1RadPQ (Fig. 12l). For theQLCS in central

and southeast Kansas, the performance of both experi-

ments is similar. The 2–5-km UH tracks for the same four

forecast times further highlight the positive (and confined)

impact of the pseudo-qy assimilation through more con-

sistent placement with respect to the SPC reports (Fig. 13).

The ETS values with C2RadPQ for all four 0–3-h

forecasts remain generally superior relative to C2Rad

regardless of the reflectivity threshold value chosen

(Fig. 14). Overall, the ETS decrease more rapidly when

the reflectivity threshold is increased from 20 to 40dBZ.

The relative improvement of ETS for C2RadPQ is more

obvious at 20 dBZ (Fig. 14a). Performance diagrams

indicate that at all reflectivity thresholds, the CSI and

POD are superior in C2RadPQ for all 0–3-h forecasts

(Fig. 15). At larger reflectivity thresholds (30 and

40dBZ), however, the biases do show a noteworthy (but

reasonable) increase, especially for the forecasts initi-

ated at 2200 and 2300 UTC (Figs. 15h,i,k,l). The bias

values are larger because of increased storm coverage

with time coupled with an overestimate of hydrometeor

content (and likely, rainfall) by the microphysics (Fierro

et al. 2015).

5. Summary and conclusions

While water vapor (qy) is a critical component of con-

vective systems, high spatiotemporal observations of this

field are lacking. Over the past several years, several

pathways have been explored to derive pseudo-qy data.

These include deriving pseudo-qy from radar reflectivity

(H. Wang et al. 2013a; Gao et al. 2018), lightning data

(Fierro et al. 2016), and differential reflectivity (Carlin

et al. 2017). These derived data were then assimilated into

NWPmodels at convection-allowing scales (dx# 3–4km).

In this study, an alternative approach/algorithm to derive

pseudo-qy observations from radar reflectivity data is

proposed and tested systematically for two high-impact

weather events.

The first step of this new algorithm is to identify areas

of deep moist convection using the vertically integrated

liquid (VIL) calculated from 3D reflectivity observations.

If the calculated VIL values exceeds a given, fixed
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FIG. 11. As in Fig. 5, but for 24 May 2011.
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FIG. 12. As in Fig. 6, but for 24 May 2011.
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FIG. 13. As in Fig. 7, but for 24 May 2011.
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threshold provided the existence of reflectivity values

meeting a fixed criterion (35dBZ), the column is classi-

fied as convective. Based on this hypothesis, pseudo-qy is

calculated by assuming saturation at these locations (i.e.,

saturation with respect to liquid substance). If the calcu-

lated VIL exceeds the aforementioned fixed threshold in

any given area based on model background reflectivity,

but without support from observations, these are cate-

gorized as spurious convection. In this case, the algorithm

reduces the background relative humidity at these loca-

tions to suppress (or at least weaken) convection. The

next and final step is to assimilate the derived pseudo-

qy observations into the model together with radar ra-

dial velocity and reflectivity in a 3DVAR framework

with 15-min data assimilation cycles over a 4-h data as-

similation period, and launch 3-h forecasts every hour.

The proposed new approach has been examined for

two tornadic severe weather events, namely the 16 May

2017 tornadic supercells in Texas andOklahoma and the

24 May 2011 tornadic outbreak in Oklahoma. In both

cases, two experiments are performed, one with and one

without the assimilation of pseudo-qy observations. The

analyses and forecasts of these two severe weather

events are qualitatively and quantitatively improved in

both cases when the pseudo-qy observations are assim-

ilated, including: obtaining more consistent analyses of

moisture and better analyses of precipitation; reductions

of spurious storm cells; and more realistic prediction of

reflectivity patterns and updraft helicity tracks which

better match the observed tornado damage tracks.

The performance of assimilating VIL-derived pseudo–

water vapor observations, however, is only tested for two

single cases which occurred over the same geographical

area (U.S. Great Plains) and during the same season

(spring). It is possible that heavy precipitation areas ac-

tually associatedwith downdrafts (that are also potentially

unsaturated) having large values of VIL, particularly if

they are collapsing. Alternatively, it is also possible that

a storm containing a very strong updraft might actually

produce locally smaller values of VIL. In the future,

it would be worth looking into alternative methods to

derivemore accurate estimations of the VIL threshold for

different place and/or seasons. Additionally, more case

studies are needed to improve the performance of the new

method. Future work is underway to combine the VIL

approach with other existing or new methods in an at-

tempt tomore accurately identify regions characterized by

deep moist convection.

As discussed earlier, several methods for deriving and

assimilating pseudo-qy observations into convective-

scale NWP have been investigated in previous studies.

Among them, the ZDR column algorithm appears to

offer promise. It has been found challenging, however,

FIG. 14. As in Fig. 8, but for 24 May 2011.
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FIG. 15. As in Fig. 9, but for 24 May 2011.
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to mosaic ZDR column data from multiple radars. Other

investigators also have proposed pathways to assimilate

pseudo-qy observations derived from total lightning data

measured by ground-based networks (ENTLN) or

spaceborne instruments (GLM). With the advent of the

recent successful launches of the GOES-16 (November

2016) and GOES-17 (March 2018) satellites, more data

with uniform, high spatiotemporal coverage over large

geographical areas are becoming available. This war-

rants the development and testing of several types of

proof-of-concept data assimilation approaches spanning

various frameworks (3DVAR, 4DVAR, EnKF, or hy-

brid) to better understand how the information they

contain could benefit NWP forecast over a wide range of

scales. It will be particularly informative to perform case

studies with these three types of available data. In this

way, we may better understand which method is more

effective and if the combined use of these datasets can

result in improved convective scale NWP.
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